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Purpose of review

Primary headaches, such as migraine and cluster headache, are one of the most common and disabling
neurological diseases worldwide. Neuroimaging studies have changed the way we understand these
diseases and have enriched our knowledge of the mechanisms of actions of currently available therapies.

Recent findings

The present review highlights the major findings reported in migraine and cluster headache neuroimaging
over the last year. Widespread structural and functional abnormalities in cortical and subcortical areas
involved in multisensory, including pain, processing have been shown in migraine and cluster headache
patients during different phases of the disease. Beyond the involvement of single brain areas, dysfunctional
brain networks contribute to their pathophysiology. New central mechanisms of action of headache
preventive treatments have also been explored.

Summary

A better understanding of migraine and cluster headache biology has paved the way for the development
of new improved treatments for both these conditions. Although significant advances have been made over
the last year, there are still many unsolved questions to address.
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INTRODUCTION

Over the last decades, an increasing recognition of
the importance of primary headaches, such as
migraine and cluster headache, has led to a growing
interest in understanding their pathophysiology
and developing new treatments. Preclinical and
neuroimaging studies have changed the way we
understand these conditions. It is now widely
accepted that they should be viewed as complex
brain network disorders that involve multiple corti-
cal, subcortical, and brainstem regions, instead of
purely vascular disorders [1,2]. Conventional and
advanced magnetic resonance techniques have been
applied extensively to the study of patients with
these headaches, both in the course of an acute
attack and during the interictal phase. Functional
imaging techniques, such as arterial spin labeling,
task-related and resting state functional magnetic
resonance imaging (fMRI), allow assessment of
hemodynamic changes which are coupled to
regional neural activity. Functional connectivity
fMRI data provide information about the interplay
between different brain areas. Their application in
studying headache patients has shed light on the
mechanisms responsible for initiation and propaga-
tion of attacks, and has disclosed the activity of
ht © 2018 Wolters Kluwe
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cortical and subcortical regions during the different
phases of the attack [3,4]. In association with func-
tional imaging abnormalities, modern morpho-
metric techniques, like voxel-based, surface-based
morphometry, and diffusion tensor imaging, which
provide insights into the macrostructure and micro-
structure of brain gray matter and white matter,
have shown widespread brain structural abnormali-
ties in patients with headache [5,6]. The present
review aims to highlight the most recent advances
in headache neuroimaging, focusing the attention
on MRI studies that have explored brain function
and structure in patients with migraine and cluster
headache.
r Health, Inc. All rights reserved.
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KEY POINTS

� Neuroimaging studies have changed the way we
understand migraine and cluster headache, supporting
a key role of the brain in their pathophysiology.

� Widespread brain functional and structural changes
have been demonstrated in patients with migraine and
cluster headache in different phases of the disease.

� New central mechanisms of action of headache
preventive treatments have been explored.

� A better understanding of migraine and cluster
headache biology has paved the way for the
development of new improved treatments for both these
conditions.

Neuroimaging
Understanding migraine pathophysiology

Over the last 60–70 years, pathophysiological mech-
anisms of migraine have been widely debated.
Although, there is ample evidence supporting the
involvement of the trigeminovascular system in the
pain phase, there is no proof that vascular changes
may per se lead to pain [7]. Moreover, a purely
vascular theory would not explain the many non-
nociceptive symptoms typically experienced by
migraineurs during the premonitory (prodromal)
and postdrome phase [1,8]. In support of the
 Copyright © 2018 Wolters Kluwer 

FIGURE 1. A schematic illustration of the main brain regions de
migraine phases, represented on a high-resolution T1-weighted te
nucleus and visual cortex [16&]; Aura: visual cortex [23&&]; Heada
[16&,17], pons [14,15&,16&], spinal trigeminal nucleus and visua
occipital cortex [14], thalamus [18]; Postdrome: visual cortex [16
[10,19,26,27], hippocampus [25,26], hypothalamus [17], insula
[10,26,27,30], PAG [19,24], thalamus [27,44], temporo-occipita
anterior cingulate cortex; OFC, orbito-frontal cortex; PAG, periaq
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neuronal theory, neuroimaging findings demon-
strated widespread brain functional [4,9] and struc-
tural [10,11] alterations in migraineurs both during
and outside the migraine attack. The main brain
regions described by recent studies as key areas
involved in the various migraine phases are summa-
rized in Fig. 1.

Exploring the migraine brain in the ictal
phase

Where exactly the migraine attack originates is one of
the main pathophysiological questions that is still
unresolved, and assumes there is single site. Early
positron emission tomography studies [12,13] dem-
onstrated a selective activation of the dorsal pons
during spontaneous migraine attacks that persisted
after complete pain-resolution because of sumatrip-
tan administration, leading to the conclusion that
this brainstem region might be the migraine ‘genera-
tor’. A significant role of the pons in migraine attack
and especially in the headache phase has been lately
confirmed in migraine patients with aura. Two recent
studies have revealed an increased connectivity
between the pons and the ipsilateral primary somato-
sensory cortex [14], as well as hyperperfusion in a
brainstem region corresponding to the ‘migraine
generator’ [15

&

], during headache preceded by aura.
An interesting recent study [16

&

] has shift atten-
tion to the hypothalamus as migraine ‘generator’.
Health, Inc. All rights reserved.

scribed by recent studies as key areas involved in the various
mplate. Prodrome: hypothalamus, pons, spinal trigeminal
che: ACC [44], cerebellum and PAG [19], hypothalamus

l cortex [16&], middle frontal, somatosensory and temporo-
&]; Interictal: ACC [10,44], amygdala [26,28], cerebellum
[27,29], frontal, temporal and somatosensory cortex
l and visual cortex [26,27,34,46]. Abbreviations: ACC,

ueductal gray.
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It was already known that the region of the hypo-
thalamus was active during the premonitory and
pain phase [8]. Schulte et al. [16

&

], studying a
migraine patient without aura for 30 consecutive
days, confirmed these findings and revealed altered
functional connectivity between the hypothalamus
and the spinal trigeminal nuclei and dorsal pons
during the preictal and pain phase. The authors
postulated that the functional changes of this net-
work might be the real driver of migraine attacks.
Interestingly, this study has also showed a persistent
altered activation of the visual cortex during the
different phases of migraine. In a following study
[17], the same authors reported an increased activity
of the anterior hypothalamus as a response to pain
in chronic migraine patients, regardless the disease
phase. However, a higher activity of the posterior
hypothalamus was revealed in both patients with
episodic and chronic migraine during the ictal
phase. These results led the authors to hypothesize
that the anterior part of the hypothalamus may play
a role in migraine chronification, whereas the pos-
terior part may be involved in the acute pain phase
regardless the disease severity.

The thalamus is a sensory relay station that
contributes to the development of most of the
symptoms usually experienced by migraineurs. In
support of this, Amin et al. [18] reported an abnor-
mal connectivity between the posterior thalamus,
where the ascending pain pathways converge, and
pain modulating and encoding cortical areas during
spontaneous attacks of migraine without aura.

A cerebellar involvement in migraine patho-
physiology has also been recently suggested. Co-
activation of the cerebellum and periaqueductal
gray has been revealed during trigeminal pain
stimulation in patients experiencing a migraine
attack [19].

Although single brain regions may have a piv-
otal role in migraine attack, it seems more likely that
migraine originates from dysfunction of brain net-
works. Connectivity studies reported abnormal
functional organization during the ictal phase in
networks relevant for mediating cognitive, atten-
tional, and emotional components of pain [4,20].

Another crucial question is whether the blood–
brain barrier (BBB) might be affected during
migraine attacks. Two recent dynamic contrast-
enhanced MRI studies did not find any significant
change in the BBB permeability in patients with
migraine with [15

&

] and without [21
&

] aura who were
examined between 4 and 24 h after the onset of
spontaneous migraine attack, confirming that the
BBB is normal in migraine. These results have impor-
tant implications for the development of new
antimigraine treatments.
 Copyright © 2018 Wolters Kluwe
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Migraine aura

Around 30% of patients with migraine experience
aura symptoms during their migraine attack. Corti-
cal spreading depression (CSD), a wave of cortical
depolarization followed by neuronal suppression, is
widely accepted as the underlying mechanism of
aura [1]. Neuroimaging studies reported a different
pattern of cerebral hemodynamic changes during
aura symptoms [3,22]. A recent fMRI study [23

&&

]
investigated whether the blood oxygenation level
dependent (BOLD) response to checkerboard visual
pattern may change during visual aura symptoms
induced by hypoxia, sham hypoxia, or physical
exercise. The authors reported different changes
in BOLD response across the visual cortex in relation
to various aura symptoms: reduced BOLD response
in patients reporting negative symptoms (e.g. sco-
toma) and increased response in patients who only
experienced positive symptoms (e.g. flickering).
These findings suggest that the heterogenous
aura symptomatology may result from different
CSD effects on neuronal activity or neurovascular
coupling.
Exploring the migraine brain in the
interictal phase

Numerous interictal neuroimaging studies have
provided evidence of widespread structural and func-
tional reorganization of regions involved in pain and
multisensory processing, such as the PAG [19,24],
hippocampus [25,26], cerebellum [10,19,26,27],
somatosensory, and cingulate cortex [10,27], in
patients with episodic and chronic migraine. Con-
nectivity studies have disclosed broad alterations in
limbic [28,29], sensory-motor [30], and cognitive [31]
networks that might influence multisensory integra-
tion and pain experience in migraineurs, and con-
tribute to migraine chronification.

Using a data-driven classification approach,
Schwedt et al. [32

&

] have been able to distinguish
patients with migraine with different disease sever-
ity based upon their brain structures. However, the
model could not clearly distinguish migraine
patients from healthy controls. Although, as sug-
gested by the authors, this might be the results of
only subtle structural alterations experienced by
migraineurs; the difficulty in finding controls who
do not harbor a migraine biology should also be
considered given the lifetime prevalence data [33].

Another recent morphometric study [34] has
investigated a large sample of patients with and
without aura recruited from the general population.
The authors found a significant decreased gray mat-
ter volume in visual processing areas regardless of
the presence of migraine aura or disease activity,
r Health, Inc. All rights reserved.
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thus indicating that these changes might have been
present throughout life and migraine with and with-
out aura might share common pathophysiologic
mechanisms. Whether structural abnormalities
might either predispose to migraine or be a conse-
quence of the disease is still unclear. In a well
planned study Gaist et al. [35

&

] compared a group
of female migraine twins with aura to their
migraine-free co-twins and unrelated migraine-free
twins, that served as controls. The authors found a
significant thicker cortex in V2 and V3A visual areas
that were not associated to the frequency of head-
ache or aura attacks. These findings strengthen the
hypothesis that thicker visual cortex may be an
inherent trait associated with migraine with aura,
thus predisposing to the initiation of visual aura
symptoms.

A further unanswered question is whether mor-
phometric changes are migraine specific or are com-
mon to other headache and chronic pain disorders.
Two latest studies revealed distinct gray matter vol-
ume patterns that distinguish migraineurs from
patients with tension-type [36] or persistent post-
traumatic headache [37], thus suggesting that dif-
ferent pathophysiologic mechanisms might occur
in different type of headaches.

Neuroimaging data on the association of white
matter hyperintensities and migraine has been con-
flicting. Some studies reported a higher prevalence
of subcortical, deep, and cerebellar ischemic hyper-
intensities in migraineurs compared to controls
[38–40], whereas other studies did not confirm such
results [41,42]. Discordant findings have also been
found regarding the influence of potential risk fac-
tors, such as the pain side [39], aura symptoms,
disease activity [42], or reduced cerebral blood
flow [40,41].

Magnetic resonance spectroscopy allows inves-
tigation of neuronal and glial integrity and metabo-
lism in vivo. Previous findings demonstrated an
abnormal energy metabolism and excitatory–inhib-
itory balance in migraineurs [43]. Niddam et al. [44]
have found reduced N-acetyl-aspartate levels in
thalamus and anterior cingulate cortex (ACC) in
chronic migraine patients compared to episodic
patients and healthy controls. These changes were
strictly correlated with each other and such relation
was significantly different from that found in
healthy controls. These findings lend support to
the role of a dysfunctional thalamo-cortical net-
works in migraine chronification.

Although the role of the visual cortex is well
established in migraine with aura, data [16

&

,34]
support its involvement also in the pathophysiology
of migraine without aura. Various studies reported a
hyper-responsivity of the visual cortex in migraine
 Copyright © 2018 Wolters Kluwer 
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patients, which is more pronounced in those
experiencing aura symptoms [4,45]. Interestingly,
Zielman et al. [46] have recently found significant
increased levels of glutamate, one of the main excit-
atory neurotransmitters, in the visual cortex in
patients with migraine without aura but not in those
with aura. To clarify the meaning of such visual
abnormalities, further studies including patients
without aura and with no visual hypersensitivity
are needed.
Understanding cluster headache
pathophysiology

Although there is large body of evidence supporting
a key role of the hypothalamic region, and trigemi-
novascular and parasympathetic systems in cluster
headache, how these structures interact with each
other and with other cortical areas, how the attacks
originate, and the mechanisms responsible for shift-
ing from the ‘out-of-bout’ to ‘in-bout’ period, and
vice versa, are still unclear [2].

Early neuroimaging studies [47] have shown a
specific activation of the posterior inferior hypothal-
amus during the pain phase in patients with ‘in-
bout’ cluster headache. A following voxel-based
morphometry (VBM) study [48] revealed concurrent
gray matter volume increase of this hypothalamic
region. However, other morphometric studies did
not reproduce the same result. Interestingly, Arkink
et al. [49] have recently found bilateral enlargement
of the hypothalamus in patients with cluster head-
ache compared to patients with controls and
migraine, which was mainly driven by the anterior
hypothalamus. An increased hypothalamic volume
was also found when patients with trigeminal auto-
nomic cephalalgias (cluster headache and chronic
paroxysmal hemicrania) were compared to migrai-
neurs and controls. Conversely to previous findings
[16

&

,17], the authors excluded a hypothalamic
involvement in migraine. Both the anterior and
posterior hypothalamus may be involved in cluster
headache pathophysiology: the anterior hypothala-
mus with its suprachiasmatic nucleus might con-
tribute to the circadian rhythm of cluster headache
attacks [2], whereas the posterior hypothalamus
might generate the restlessness commonly experi-
enced by cluster headache patients during the
attack [50]. Owing to its small size, the hypothala-
mus is a brain area that is difficult to measure in vivo.
The use of different methods to process the images
along with different study designs and cohort of
patients may explain the inconsistency between
VBM studies.

It is also noteworthy that patients with cluster
headache experience dynamic structural [51] and
Health, Inc. All rights reserved.
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functional [52] changes in cortical and subcortical
areas involved in nociception that are related to the
disease phase (‘in-bout’ or ‘out-of-bout’) and disease
activity.
Understanding headache treatments
mechanisms of action

In conjunction with progress in theories of migraine
and cluster headache pathophysiology, understand-
ing of the mechanisms of action of preventive treat-
ments for headache has evolved.

Migraine

Over the last year neuroimaging studies have
explored the therapeutic effects of pharmacological
and nonpharmacological treatments commonly
used in migraine prevention. Hebestreit and May
[53] investigated whether beta blockers, such as
metoprolol, might exert a central effect in migrai-
neurs after a 2-month treatment period. Curiously,
the authors did not find any significant effect of
metoprolol on central pain processing regions.
Although, further exploratory analysis demon-
strated an increased hypothalamic activity under
metoprolol that was correlated to a decrease of
headache days.

A potential central effect of a single dose of
topiramate in attenuating the pain-related activity
of the thalamo-cortical network has been recently
demonstrated in healthy controls [54]. Further
investigations in migraineurs are needed.

A cortical modulatory effect of external trigemi-
nal nerve stimulation (eTNS) on areas belonging to
the descending pain network has been reported
in two recent studies [55,56]. After 3 months of
eTNS therapy, an overall clinical improvement
was associated with a normalization of the pretreat-
ment hypometabolism of the ACC and orbito-
frontal cortex [56]. Moreover, the increased ACC
activation observed in migraineurs during trigemi-
nal heat stimulation was reduced by the daily use of
eTNS [55].

Cluster headache

The promising preventive effect obtained by hypo-
thalamic region deep-brain stimulation (DBS) [57]
supports a key role for the region in cluster head-
ache. The site of the optimal stimulation: within the
hypothalamus or in the ventral tegmental area
(VTA) in the midbrain, is still a matter of debate.
Akram et al. [58] demonstrated that in patients with
medically refractory chronic cluster headache who
responded to DBS, the DBS contacts induced a local
activation of the VTA. This area was located in the
 Copyright © 2018 Wolters Kluwe
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trigeminohypothalamic tract and was connected to
the hypothalamus, prefrontal, and mesial temporal
areas, as well as the trigeminal system and other
brainstem nuclei involved in the descending inhibi-
tory pain pathway. These results suggest that the
DBS may exert its therapeutic effect modulating the
top-down antinociceptive and trigeminal parasym-
pathetic system, although given its significant mor-
bidity and potential mortality [59], there is no role
for this approach in clinical practice at this time.
CONCLUSION

Significant advances in on our understanding of
migraine and cluster headache pathophysiology
have been made over the last year. New central
mechanisms of action of headache preventive treat-
ments have been explored. However, there are still
many unsolved questions to address. In the future,
more effort should be made in limiting the number
of caveats that commonly applied to neuroimaging
studies, such as heterogeneous sample of patients
and data analyses, small sample size, recruitment of
non ‘pure’ controls. Moreover, longitudinal studies,
studies comparing headache patients to patients
with other chronic pain disorders and investigating
unexplored type of headaches, such as hemicrania
continua or short-lasting unilateral neuralgiform
headache, are needed.
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